您好!欢迎访问上海康为医疗科技发展有限公司官方网站!
心肺复苏模型

新闻分类

联系我们

上海康为医疗山西分公司:

地址/ADD: 山西省太原市迎泽区桥东街百荣居1008

全国销售服务热线:

400 622 6358 


商务:贺小姐

移动手机:156 0194 2570

企业QQ: 2355685392

商务:魏小姐

移动手机:138 1748 7397  

企业QQ: 1942228229

商务:徐小姐

移动手机:138 1747 3967  

企业QQ: 2355685398


上海工厂:上海康为医疗科技发展有限公司

康为医疗上海工厂微信二维码(扫二维码)

地址/ADD:上海市浦东新区书院镇新欣东路27号(离上海浦东国际机场车程20分钟)

电话/tel:021 5819 1097 传真/fax: 021 5819 1099

(工厂设有急救,护理,内科,外科,妇科,产科,儿科,眼科,耳鼻喉科,内窥镜,

                微创医学技能模型,医患关系沟通模型,医药促销礼品样品展厅)

  

北京大学教授谈未来北京医学模型AI医疗影像模型的机遇和挑战

您的当前位置: 首 页 >> 新闻中心 >> 行业新闻

北京大学教授谈未来北京医学模型AI医疗影像模型的机遇和挑战

发布日期:2018-01-07 作者:山西康为医疗 点击:

为什么选择医学影像这条路?

王立威教授谈到,有三个领域会与深度学习进行紧密的结合,并希望能够选择其中一个方面来进行深入研究:一个是无人驾驶;一个是金融领域;再一个则是北京医学模型医学领域。

他认为,无人驾驶在计算机视觉的识别技术已经趋于成熟,具备可以与机器学习进行深入结合的条件,但作为一个与汽车实体紧密相关的应用方向,在高校内做研究的空间相对受限;此外,驾驶作为一种动态活动,相对于静态图像识别的难度与复杂性要高得多。

而金融领域尽管积累了非常多高质量的封闭数据,但它属于噪声非常大的信号,受突发政策、人为操作的影响较大,并非总是严格遵循客观规律。

AI技术不是金融交易中的核心技术,交易的安全是重中之重。如果只考虑交易频次问题,交易又分为低频和高频,“如果是低频交易,我不认为AI 有太大的用武之地,因为AI 需要大数据、低频交易数据量太小,如果要让AI技术发挥技术,一定是在高频领域。但是现阶段的一个问题是,高频领域有很多分析的工作还是是需要人来做,例如提炼对交易产生影响的因素或者策略。所以综合上述的几个因素,我最后选择了从医学影像入手。”

在这个应用研究的三岔路口上,王立威教授最终选择了北京医学模型医学影像领域。

北京医学模型医学影像是未来几年之内人工智能影响最深远的领域。”

一方面,医学影像属于静态图像识别,相对于视频的处理技术要更加成熟;另一方面,依托北京大学的一系列附属医院,不论是从数据的获取或是系统的测试落地上,王立威教授所在的北京大学北京医学模型研究团队都有着得天独厚的优势。

王教授表示,如果开发者要执行的任务处于非常封闭的环境,和人的常识没有什么关系,这样的任务非常适合机器来做,但是如果这项任务和常识挂钩,例如对自然语言的理解,对于机器而言难度非常大。“医学影像相对而言是具有一定封闭性的问题。”

当前AI医学影像技术的真实现状

当然,不是说医学影像具有一定的封闭性,AI就能够在医学领域畅行无阻。王立威教授列举了两个AI对医学影像产生重大影像的案例——斯坦福团队在皮肤癌检测以及Google的DeepMind的糖网筛查。

王教授的观点是:

1、医学影像处理病种的数量非常庞大,上述两个团队的例子解决的都是单病种问题。医学影像上一共可以分为两千多个的病种。“解决一个单病种已经不是简单的事情,斯坦福的团队已经和顶级的医学专家研究数年才得到目前的成果,要囊括两千多个病种更是难上加难。此外,病种与病种之间的差异度也很大,所以,AI 医学影像需要顶级医学专家和顶级机器学习学者通力合作才有可能成功。”

2、成像设备的差异会产生多种类型的图像。CT、MRI、X光、超声、内窥镜、病理切片这些图像缺乏一定的标准。“现在我们只是在一些病种上进行单点突破,整个医学影像仍任重道远。”

北京大学王立威教授: AI 医学影像的现状、机遇与挑战

从技术角度而言,今天的机器学习、人工智能技术对于检测等问题可能做得比较好,但是全局性病变、结构性病变对机器学习还是有难度。

未来几年看谁能胜出,就看谁能选对病种,选错就有可能浪费时间、精力。

文章内容转载自网络,如有版权可联系山西康为医疗删除。

本文网址:http://www.bjtongfang.cn/news/345.html

相关标签:北京医学模型

最近浏览:


在线客服
分享